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Abstract

This is the final report for EOARD project #033060 “Speaker verifica-
tion using a dynamic, ‘articulatory’ segmental hidden Markov model”.

A segmental HMM is a HMM whose states are associated with sequences
of acoustic feature vectors rather than individual vectors. This report de-
scribes the results of experiments in which such a model is applied to text-
dependent and -independent speaker-detection on the YOHO and Switch-
board corpora, respectively. Text-dependent speaker verification results on
YOHO using a simple segmental HMM show a 44% reduction in false accep-
tances compared with a conventional HMM. A type of ‘segmental GMM’
is then described for text-independent speaker detection. In order to ap-
ply this model to the NIST 2003 single-speaker test set, various techniques
are developed to reduce its computational load. A range of experiments are
then reported which investigate the utility of different aspects of this model
for text-independent speaker-detection. From these experiments we have
been unable to demonstrate a benefit, in terms of text-independent speaker-
detection accuracy, from the use of dynamic segment models corresponding
to linear trajectories with non-zero slope. Consequently we have also been
unable to demonstrate any benefit from the use of longer segments. Thus
there is little evidence from these experiments that non-stationary sections
of a speech signal contain important individual differences which can be
exploited for speaker-detection. If this is true, it goes some way towards
explaining the success of GMM-based approaches. We conclude that further
work, to determine definitively the contribution of non-stationary segments
to speaker-detection, is needed.
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1 Introduction

This is the final report for EOARD project #033060 “Speaker verification using
a dynamic, ‘articulatory’ segmental hidden Markov model”, which started on
15t October 2003. The report describes technical progress which has been made,
discusses the speaker verification results, and outlines possible future work.
Some recent work in speech recognition conducted as part of the ‘Balthasar’
project’ (Russell and Jackson 2005) at the University of Birmingham has re-
sulted in a class of novel, multiple-level Segmental Hidden Markov Models
(MSHMM) in which the relationship between symbolic and acoustic representa-
tions of a speech signal is regulated by an intermediate ‘articulatory’ layer (figure
1). Each state of the model is associated with variable-duration trajectories in
the ‘articulatory’ space, which are mapped into the acoustic space using one
or more ‘articulatory-to-acoustic’ mappings. Comparison with unknown speech
data, for the purposes of probability calculations, takes place in the acoustic
space. A similar approach has been studied by Deng and Ma (Deng and Ma
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Figure 1: A segmental models that uses linear trajectories in an intermediate space.

Such an approach has many potential advantages for speech pattern process-
ing. For example, in acoustic representations of speech (derived from short-term
log-power spectra) articulator dynamics are manifested indirectly, often as move-
ment between, rather than within, frequency bands. Intuitively, therefore, it
would be much better to model dynamics directly, in an articulatory-based repre-
sentation. Also, by incorporating an articulatory representation (or at least one
which is more closely related to an articulatory representation than conventional
spectrum-based acoustic representations), it may be possible to characterise the
production strategies that give rise to variability in fluent, conversational speech.
Thus it was hoped that such a model would improve speech recognizer perfor-
mance by modelling the underlying mechanisms that cause variability, rather
than relying solely on generic statistical modelling techniques.

!The “Balthasar” project was funded by EPSRC grant GR/MS87146 “An
integrated multiple-level statistical model for speech pattern processing” (see
http://web.bham.ac.uk/p.jackson/balthasar)



This approach should also have benefits for speaker detection, and the goal
of this project is to apply M-SHMMSs to that problem. The benefits should fall
into two categories:

e Those which derive from the incorporation of an explicit ‘articulatory-
related’ representation into a statistical model, and

e Those which derive from the improved modelling of speech dynamics and
duration which results from the use of a segmental framework.

In the first category, inter-speaker differences which result from physiological
factors, such as the differences between an adult’s vocal tract and that of a
child, should be represented explicitly in the articulatory layer rather than in-
directly through their acoustic correlates. The model should also enable indi-
vidual differences in the articulatory strategies used by a speaker during speech
production to be exposed and modelled explicitly. Furthermore, provided that
the articulatory-based representation is sufficiently compact, there should also
be significant advantages for speaker adaptation from limited amounts of data,
since less data will be needed to train the smaller number of parameters. As an
illustration, in (Russell and Jackson 2005) it is shown that a triphone M-SHMM
system with an intermediate representation based on just 3 formant frequen-
cies can achieve better phone classification results on TIMIT, while at the same
time having 25% fewer parameters than the conventional system. Of course, in
order to realise this benefit fully it will be necessary to extend speaker adapta-
tion techniques, such as MAP (Gauvain and Lee 1994) or MLLR (Leggetter and
Woodland 1995) to the articulatory layer of a M-SHMM. This is currently being
studied in a separate PhD project.

The second type of potential benefit derives from improved model of speech
dynamics and duration. The model should be able to capture individual differ-
ences in non-stationary speech segments which might otherwise be swamped by
large variance due to the HMM piecewise stationarity assumption. Thus it is
plausible that such a model will improve our understanding of inter-speaker dif-
ferences, and hence improve speaker detection performance, by modelling some
of the underlying mechanisms that give rise to intra- and inter-speaker differ-
ences. It would also be possible to determine whether non-stationary speech
segments are any more or less useful for speaker detection than stationary seg-
ments.

The speaker-detection experiments described in this report focus on the sec-
ond set of factors. In other words we apply simple linear-trajectory segmental
HMDMs in which the intermediate representation is absent, to speaker detection.
These M-SHMMs are equivalent to the ‘Fixed Trajectory’ segmental HMMs de-
scribed in (Holmes and Russell 1999). In practice, this type of segmental HMM is
realised in the ‘SEGVit’ software toolkit by setting the intermediate space equal
to the acoustic space, and by setting the ‘articulatory-to-acoustic’ mapping to
be the identity mapping I.



The report is organised as follows. In section 2 we present some of the rele-
vant background results on the application of M-SHMMs to phone recognition
from the earlier ‘Balthasar’ project. Section 3 is a brief description of relevant as-
pects of the theory of M-SHMMs. The main part of the report presents results of
two sets of experiments, namely text-dependent speaker detection experiments
on the YOHO corpus (section 4), and text-independent speaker-detection ex-
periments on a subset of the 2003 NIST speaker recognition evaluation test set
(section 5). The first set of experiments were also reported at the 2004 ‘Odyssey’
Speaker Recognition Workshop in Toledo, Spain, in June 2004 (Liu, Russell, and
Carey 2004). Our conclusions, and suggestions for further work, are set out in
section 8.

2 Relevant results from the ‘Balthasar’ Project

In this section we review some of the relevant results on general M-SHMMs from
the phone classification experiments reported in (Russell and Jackson 2005).

A potential problem with the type of multiple-level model described in the
previous section is that any advantages which are gained by the introduction of
an intermediate layer may be compromised by inadequacies of the articulatory
representation or articulatory-to-acoustic mapping, or theoretical compromises
made for mathematical or computational tractability.

In (Russell and Jackson 2005) M-SHMMs were studied in which the inter-
mediate representation is based on the control parameter set for the Holmes-
Mattingley-Shearme (HMS) parallel formant synthesiser (Holmes, Mattingly,
and Shearme 1964). Three different formant-based intermediate parameteri-
sations were considered:

e 3FF - the first three formant frequencies, F'I, F2 and F3. It is clear
that these three parameters alone do not contain sufficient information
to reconstruct a short term spectrum (or MFCC vector) unambiguously.
For example, there is no data concerning formant amplitudes

e 3FF+5BE - the first three formant frequencies plus 5 band energies

e 12PFS - the complete set of 12 Holmes-Mattingley-Shearme parallel for-
mant synthesiser control parameters (Holmes, Mattingly, and Shearme
1964). Experiments conducted by Holmes in the early 1970’s demonstrated
that these parameters, if chosen correctly, are sufficient to synthesise nat-
ural sounding speech (Holmes 1973).

In all of these experiments speech dynamics were modelled using linear trajec-
tories, and the articulatory-to-acoustic mapping was realised as a set of one or
more linear mappings (Russell and Jackson 2005).

It is easy to see that a linear ‘articulatory-to-acoustic’ mapping is not suf-
ficient for speech pattern modelling (Richards and Bridle 1999). For example,
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consider the case where speech is represented in the acoustic domain as the out-
put of a set of Dy uniformly-spaced band-pass filters spanning frequencies up to
4kHz, and f is a hypothetical ‘formant’ trajectory, with unit amplitude, whose
frequency increases linearly from 100 Hz to 4 kHz. The corresponding trajectory
in acoustic space is a complex path over the surface of the Dy dimensional unit
sphere, which passes through each of the axes in turn. Such a trajectory clearly
cannot be realised as the image of f under a single linear mapping. However,
previous experience has shown that even relatively small deviations from the
conventional HMM framework can result in significant difficulties and poor per-
formance. Therefore it was judged that a proper understanding of the issues
which arise in the implementation of a system with linear transformations is
essential before attempting to deal with more complex non-linear systems.
The key results reported in (Russell and Jackson 2005) are:

e There is a theoretical upper bound on the performance of a linear M-
SHMM, which is better than that obtained with a comparable conventional
HMM

e This upper bound can be attained by appropriate choice of ‘articulatory’
representation and articulatory-to-acoustic mappings

e There is a trade-off between the dimension of the ‘articulatory-based’ space
and the number of different mappings which make up the piecewise-linear
‘articulatory-to-acoustic’ mapping. For example, optimal performance can
be achieved by using all 12 HMS synthesiser control parameters and a
single (phone-independent) linear mapping, or by using fewer parameters
but more, phone-dependent, mappings (Russell and Jackson 2005)

The significance of this result, in general, is that it provides a solid theoretical
foundation for the development of richer classes of multi-level models, which
include non-linear models of dynamics, alternative articulatory representations,
sets of non-linear articulatory-to-acoustic mappings, and integrated optimisation
schemes that support unsupervised learning of the trajectory, intermediate rep-
resentation and mapping parameters. Moreover, these speech recognition results
also motivate the application of M-SHMMSs to speaker detection.

3 Overview of the theory of M-SHMMs

The purpose of this section is to explain the basic theory of multiple-level,
trajectory-based segmental HMMs (M-SHMMs) and the simpler fixed trajec-
tory segmental HMMs used in our experiments. Full details are presented in
(Russell and Jackson 2005) and (Holmes and Russell 1999). This section should
be skipped by anyone who is familiar with these papers.



3.1 Definitions

As explained earlier, a M-SHMM is a particular type of segmental hidden Markov
model (SHMM) (Ostendorf, Digalakis, and Kimball 1996). In other words, the
states of a MSHMM are associated with sequences of feature vectors, or segments,
rather than individual vectors. The model is called ‘multiple-level’ because it
considers two levels of representation of a speech signal: a D; dimensional ‘ar-
ticulatory’ space Z and a Dy dimensional acoustic space A. In (Russell and
Jackson 2005) the ‘articulatory’ and acoustic spaces are based on formants and
Mel-Frequency Cepstral Coefficients (MFCCs), respectively.

3.2 The multiple-level, linear-trajectory segment model

A state o; of a M-SHMM is identified with a variable duration linear trajectory
in Z which is mapped into A by a linear ‘articulatory-to-acoustic’ mapping. A
state is parameterised by two D; dimensional (articulatory) vectors, namely the
mid-point vector ¢; and slope vector m;, a Dy x Do (acoustic) covariance matrix
V;, and a linear ‘articulatory-to-acoustic’ mapping W; : 7 — A. A trajectory f
of length 7 is defined by:

fit) =t —tm; + ¢ (1)

where t = (7+1)/2, and the function of W is to map this ‘articulatory’ trajectory
in Z into the acoustic space A. If Y| = [y1,¥y2,...,yr] is a sequence of acoustic
feature vectors in A, then the probability (density) of Y given state o; is given
by:

(Yl |Uz) - b }/1 HN Yta ))7V)7 (2)

where d;(7) is the probability that state o; emits a segment of length 7, and
N (ye; Wi(£:(t)), Vi) is a Dy dimensional Gaussian probability density function
(PDF) with mean W;(f;(¢)) and covariance matrix V; (it is assumed tha V; is
diagonal).

In the special case where Z = A and W; is the identity matrix, this reduces
to a Fixed Trajectory Segmental HMM (Holmes and Russell 1999) and equation
2 becomes:

(}/1 |O-z)_b }/1 HN yta 7 )7 (3)

3.3 The segmental Viterbi decoder

Let M be an S-state MSHMM (for simplicity, it is assumed that the probability
of a transition from o; to state o; is zero unless j > i). Suppose that the acoustic
sequence Y{' = [y1,...,y7] corresponds to several states/segments. Then M
can only explain Y via a state sequence x = [x1, ..., 27|, which can be written
in the form x = [d; ® 2(1),...,dr ® z(L)], For each [ € {1,...,L}, 2(1) = o; for
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some i € {1,...,S}, and d; ® z(I) represents a duration d; spent in state z(1).
Thus, the joint density has the form,

L
_ t —1
p (Y, x|M) = 7. 1yb. 1) (Yttf 1) I @010 b=y (Y;tl(H_l) ) : (4)
=2

where 7,1y is the probability that the state sequence begins in state z(l); b,
denotes the acoustic segment pdf associated with state z(l); a.(—1),.() denotes
the transition probability from z(l — 1) to z(l); t; is the time at which the state
sequence X enters state z(1), and tpyq =T + 1.2

A simple extension of the segmental Viterbi decoder (see, for example,
Holmes and Russell 1999) can be used to compute the optimal state sequence X
for a given sequence of acoustic vectors YlT and model M, such that

p(Y|M) =p (Y, %[M) = maxp (Y, x|M) . ()

For completeness, a brief description of the segmental Viterbi decoder is in-
cluded. By analogy with the notation for the forward probability used in the
case of a conventional HMM (see, for example, Holmes and Holmes 2001), let

@j(t) = maxxl,...,xt_lp(}’h ey Yt Tt = S5, Tl # Sj)- (6)
The final condition, x;11 # s; is included to ensure that only segments which
are complete at time ¢ are considered. Then, it can be shown that,

(7)

a;(t) = Max max

s bi(Yf) fort =1
ééi(t — 7') Qg j bj(Y;t_T_‘_l) fort >r1

where 1 < 7 < 7y.x and m; is the probability that the state sequence begins
in the i*" state. The requirement in Equation 7 to optimise over all possi-
ble segment durations, 7, and to evaluate segmental state output probabilities,
b;j(Y . ,1), leads to a substantial increase in computational load relative to the
normal Viterbi decoder. As in conventional Viterbi decoding for continuous
speech recognition, this algorithm is applied to a single, integrated MSHMM
in which the individual word- or phone-level MSHMMs are connected accord-
ing to a grammar (Bridle et al. 1983). Thus, in the case of phone recognition
and a bigram language model, the result of decoding is the sequence of phones
[p1,- .., pa] and phone boundaries [¢1,...,tq] such that the joint probability,

d
B(Vits, o staiprsespe) =5 (Vo) TT (P (polos1) b (Yil silos) As)
¢=2
(8)

2The introduction of symbol z() to denote a state simplifies subsequent notation, in partic-
ular Eq. 4. In the symbol x;, the time index t is in synchrony with the observation sequence y;
whereas for z(1), the index [ is in synchrony with the state transitions. Unlike in a conventional
HMM, the two are not generally the same in a SHMM.
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is maximised. Here, A; is the Language Model Scale Factor (LMSF) and Ag is
the Token Insertion Penalty (TIP).

Our current software uses a single implementation of the segmental Viterbi
decoder for embedded and non-embedded training, phone classification and
phone recognition. This is achieved by introducing a time-indexed array of
breakpoints that specify, at each time t, whether a phone boundary is obliga-
tory, possible or illegal. An additional parameter, 7,,q:, specifies the maximum
permissible segment length.

4 Text-Dependent Speaker Verification

The most straightforward application of M-SHMMs to speaker recognition is
text-dependent speaker verification (TD-SV). This is because a conventional
TD-SV system typically uses phone-level or word-level HMMs, which can simply
be replaced by the corresponding M-SHMMs.

Suppose that a sequence of acoustic feature vectors Y = [yy, ..., yn] is claimed
to result from subject S speaking a text ). The decision whether to accept or
reject this claim is based on the likelihood ration:

L) - P15 o)
p(Y|Q)

where p(Y]S, Q) is computed using a set of word- or phone-level models for
speaker S, configured to represent the text @, and p(Y'|Q@) is calculated using a
set of speaker-independent models configured to represent Q.

Our experiment used the YOHO (Higgins 1990) and TIMIT (Garofolo et al.
1993) speech corpora. As this was an initial exploration of the application of
M-SHMMs to speaker recognition, we considered a Fixed Trajectory Segmental
HMM, in which there is no intermediate ‘articulatory-based’ representation (i.e.
Z = A and W; = I). Thus the experiment focusses on the utility of improved
modelling of duration and dynamics for speaker recognition (and not on the
utility of introducing an intermediate, ‘articulatory-based’ representation).

4.1 Experimental Method
4.1.1 The TIMIT and YOHO speech corpora

The YOHO corpus comprises recordings of 138 subjects speaking connected
digit-sequence phrases in an office environment. It was chosen because of its es-
tablished use in text-dependent speaker verification (Higgins 1990). The speech
in the YOHO corpus is sampled at 8kHz.

The TIMIT corpus is very well-known, and comprises recordings of read
speech. TIMIT is labeled at the phone level, and is therefore particularly useful
for building phone-level acoustic models. Speech in the training component of
the TIMIT corpus was downsampled to 8kHz sampling rate, for compatibility
with YOHO.

10



4.1.2 Acoustic parameterisation

All of the data was parameterised using the Hidden Markov Model Tool Kit
(HTK) tool ‘HCopy’ (Young, Odell, Ollason, Valtchev, and Woodland 1997).
Each file is represented as a sequence of 13 dimensional feature vectors, one
every 10ms, comprising MFCCs 1 to 12 plus energy.

No A or A? parameters were used in any of the experiments. In fact, we
have not yet used A or A? parameters in any of our previous M-SHMM based
speech recognition experiments. This is because part of the motivation for the
development of MSHMMs is to obtain a better model of speech dynamics and
thereby obviate the need for these parameters.

In a conventional HMM, the assumptions that the underlying structure of
a speech segment is stationary, and that the static, A and A? parameters are
non-zero, are clearly inconsistent. A trajectory-based model could overcome
this inconsistency: for such a model to incorporate non-zero A parameters,
linear trajectories would be needed, while one which included non-zero A and
A? would need quadratic trajectories. The issues raised by including dynamic
features in a conventional HMM are discussed in (Bridle 2004).

4.1.3 Construction of initial acoustic models using TIMIT

The TIMIT training data set was used to estimate the initial parameters for
matching sets of context-sensitive triphone HMMs and MSHMMs. The HMMs
and the M-SHMMs were built using the SEGVit M-SHMM software toolkit de-
veloped at the University of Birmingham. In both cases, monophone models
with three emitting states were constructed first, and then used to seed a set of
triphone models. The triphone model set was defined using a simple ‘backoff’
strategy whereby a triphone model was constructed if and only if 30 or more
examples of that triphone context occurred in the training data, otherwise the
triphone was replaced by a biphone (if 30 or more examples of the biphone con-
text occurred in the training data) or a monophone. This is the 1400 triphone
model set from (Russell and Jackson 2005). In the case of MSHMMs, the max-
imum segment duration 7,,,, was set to 15 and the duration probability mass
functions d; were non-parametric (Ferguson duration model (Ferguson 1980)).

46 of these triphones were needed to model the 102 cross-word triphones in
the YOHO corpus.

The states of the conventional HMMs are associated with single Gaussian
densities. This is for compatibility with the M-SHHM system, which currently
cannot accommodate multiple-component Gaussian mixture densities. The con-
ventional monophone HMMs were intialised and reestimated using the HTK
tools ‘HInit’ and ‘HRest’ respectively (Young, Odell, Ollason, Valtchev, and
Woodland 1997). These conventional monophone HMMs were also used to seed
the monophone M-SHMMs, by setting the M-SHMM state mean and variance
vectors equal to the corresponding HMM state mean vectors, and setting the
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M-SHMM state slope vectors equal to zero. The ‘self-loop’ state-transition prob-
abilities were set to zero in the case of the M-SHMMs, but were non-zero for the
conventional HMMs.

4.1.4 Construction of background and speaker-dependent models us-
ing YOHO

Models for those triphones which occur in the YOHO data were used to seed
speaker-independent sets of YOHO HMMs and M-SHMMs, which were trained
on all of the data from 20 of the subjects (10 female, 10 male) in the YOHO
corpus. These models formed the HMM and M-SHMM Background Models
(BMs). The HMM and M-SHMM BMs were each trained using 20 iterations of
Baum-Welch (HTK) and Viterbi-based (SEGVit) training respectively.

The remaining 118 subjects were used as test subjects. For each of these
subjects, 96 files were used to train speaker-dependent HMMs and MSHMMSs. As
with the BMs, the HMM and M-SHMM SDMs were trained using 20 iterations
of Baum-Welch and Viterbi-based training, respectively. The remaining 20 files
were split into 5 test sets, each containing 4 speech files. A single experiment
consisted of comparing 1 such test set with a speaker dependent model and BM.
Thus, for each system, the number of ‘authorised user’ trials is 118 x 5 = 590,
and the number of ‘impostor’ experiments is 118 x 117 x 5 = 69030.

4.2 Results of text-dependent speaker detection experiments on
YOHO

The results of the text-dependent speaker verification experiments are shown as
DET curves in Appendix A (figure 4). The lower-bound of 0.17% in the figure
for the false rejection probablity equates to a single rejection out of the 590
‘authorised user’ trials. It is likely that this results from incorrectly labelled
data. Because of this small number of errors there is no opportunity to compare
the HMM and M-SHMM systems in terms of false rejection rates on this data
set. Both systems achieve an optimal false rejection rate of 0.5%.

The false acceptance rates for the HMM and MSHMM systems provide a
more useful comparison. At the optimal points these are 0.52% for the HMM
system and 0.29% for the M-SHMM system, corresponding to 359 and 200 false
acceptances, respectively. This equates to a 44% reduction in the number of
false acceptances by using the M-SHMM system, relative to the conventional
HMM-based system.

4.3 Summary of Text-Dependent Verification Results

In summary, there is some evidence from this experiment that a M-SHMM-
based text-dependent speaker verification system can outperform a conventional
HMM-based system. This is illustrated by the reduction in false acceptance
errors. However, particularly in the case of false rejection errors, the resolution
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of this test is not sufficiently fine to draw clear conclusions. Therefore it was
decided that a more difficult speaker-detection task should be attempted, namely
text-independent speaker detection on the Switchboard corpus.

5 Text-Independent Speaker Verification

5.1 A ‘segmental GMM’

Although many different approaches to text-independent speaker detection have
been tried, the most successful approach to-date is undoubtedly probabilistic
classification using Gaussian Mixture Models (GMMs) (Reynolds 1992). As
in the text-dependent case, to test the hypothesis that a sequence of acoustic
feature vectors Y = [y1,y2, ..., yn] was spoken by a talker S, the likelihood ratio

-

is computed and compared with a pre-determined threshold 7. The probability
p(Y) is computed using a ‘Background Model’ (BM) or ‘General Speaker Model’
(GSM), which is a GMM trained on acoustic feature vectors corresponding to
speech produced by a large population of talkers. The value of p(Y|S) is com-
puted using a ‘speaker model’ for speaker S, which is a GMM trained on acoustic
feature vectors derived from speech produced by S (or, more normally, adapted
from the BM). The quantity L(S) in equation (10) is an approximation to the
posterior probability of S given the data Y, where the prior probability P(.S)
of speaker S is ignored. The score L(S) is often normalised to allow the same
threshold to be used for all talkers (Auckenthaler, Carey, and Lloyd-Thomas
2000).

In order to compare conventional methods with a M-SHMM-based method
for text-independent speaker detection, it is therefore natural to attempt to con-
struct a segmental HMM version of a conventional GMM based speaker recog-
nition system.

In a GMM-based system:

(10)

e A speech signal is treated as a sequence Y = [y1,y2, ..., yn| of independent
acoustic feature vectors,

e p(Y) is computed as a product of probabilities p(y;), p(Y) = HtT:1 (Y1),
and

e Each p(y;) is evaluated using a weighted sum of multivariate Gaussian
PDFs defined on the acoustic feature space.

By analogy, in our ‘segmental GMM’:
e Y will be treated as a sequence of K independent segments Y =

Yfl,Y;?H, s Yt];\(f_lﬂ} (where K depends on Y'),
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e p(Y) is computed as a product of probabilities p(}/;tik,ﬁrl)v p(Y) =
MK, p(i@i’“_lﬂ), where tg = 0 and tx = N, and,

e Each p(Y}i’il 41) is evaluated using a trajectory-based segment model

Since the number of segment segment boundary points K and the values of the
boundary points t1,%9,...,tx are not known in advance, they must be calcu-
lated during the speaker-detection process using the segmental Viterbi decoder
from section 3.3. By employing a segmental variant of the forward-backward
algorithm for conventional HMMs, it would be possible to calculate p(Y') by
summing over all possible values of K and segmentations t1, %o, ...,tx, and for
an individual segment [tp_q + 1,x] to calculate p(i@ik_l +1) by summing over
all segment models. However, in the present study this was discounted on
computational grounds, and also for the practical reason that it would ne-
cessitate substantial development of additional software within the ‘SEGVit’
toolkit. Instead we use the segmental Viterbi decoder to find the optimal value
of K and segmentation t1,to,...,tx, and for each segment [tx_1 + 1,tx] we de-
fine p(i@i’“ﬁl 1) = maxap(Y;i’il 4+1/0), where o ranges over all possible segment
models.

In terms of a conventional GMM, this is analogous to computing the acoustic
vector probability p(y;) by

p(y) = mazm=1,.. vPm(Yt) (11)
rather than by

M
pye) = > pm(ye) (12)
m=1

i.e. by choosing the best Gaussian component in the GMM instead of summing
over all components. For consistency, and in order to focus on the ‘frame-
based’ versus ‘segment-based’ comparison which is the subject of this research,
we use equation (11) rather than (12) in all of our ‘baseline’ GMM experiments.
Once this decision has been made, it will be seen that a conventional GMM is
equivalent to a ‘segmental GMM’ in which the maximum segment duration 7,4z
is set to 1.

5.2 Construction of the ‘segmental GMM’

Intuitively, the most natural approach to the problem of applying M-SHMMs
to text-independent speaker verification is to replace the conventional GMM
with a single segmental HMM. The ‘segmental GMM’ consists of M states, each
associated with the type of variable-duration linear trajectory segment model de-
scribed in section 3, specified by mean, slope and variance vectors in the acoustic
space and a duration probability distribution. These states are configured in par-
allel, with a single initial, non-emitting, ‘null’ state and a single non-emitting
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Figure 2: MSHMM structure for text-independent speaker verification.

final ‘null’ state (figure 2). The segmental states are analogous to the mixture
components in a conventional GMM system, while the transition probability w;
from the initial null state to the i** emitting segmental state corresponds to the
GMM component ‘mixture’ weights.

Given a sequence Y = [y1,¥2,...,yn] which is claimed to correspond to an
utterance spoken by speaker S, we compute the likelihood ratio:

-3

where the speaker-dependent probability p(Y]S) is given by:

(13)

A
(Wit Py, 1105 )A2)

(14)
In other words, for the speaker-dependent probability p(Y|S) the maximum
is taken over all possible numbers of segments K, all possible segmentations
t1,t2,...,tx of length K, and all possible sequences of length K Jfél), ...,UZS(K)
of states from the speaker-dependent model for speaker S. As before, A\q is the
Language Model Scale Factor (LMSF) and Ay is the Token Insertion Penalty
(TIP).

>

p(Y|S) = marxgmaxy, 1, . t,MmaTss s
(1) i(K)

k=1
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Similarly the BM probability p(Y) is given by:

t

J

A )

pY) = mazmaze ..o mazs oo, T] @l o0 alolfyha) - (15)
]:

(1) J
For the background probability p(Y) the maximum is taken over all possible
numbers of segments J, all possible segmentations t1, s, ...,ts of length J, and
all possible sequences of length J JZ%), ...,O'Z-]? J) of states from the background
model. We use different letters (K and J) for the segment sequence lengths
in equations (14) and 15) to emphasise that, in general, both the number of
segments and the segment indeces will be different for the speaker-dependent
and background-model probability calculations.

5.2.1 The Language Model Scale Factor )\; and Token Insertion
Penalty Ao

The effect of the LMSF )i is to control the influence of the individual ‘mixture
weights’ wf and ij (in equation (15). A large value of A\; will ‘sharpen’ the
distribution {wlB ,wh ...,wﬁ} and increase the influence of the weights. Con-
versely, if Ay = 0 then the weights will have no effect at all. The TIP Aq is a
multiplicative penalty which is incurred each time a new segment is hypothe-
sised. An explanation of a sequence Y which involves K segments will incur a
penalty of A\o®. Thus setting Ay = 1 will have no effect, but setting Ao > 1 will
favour longer sequences and setting Ay < 1 will favour shorter sequences.

In the ‘SEGVit” M-SHMM toolkit, all probability calculations are done in
the negative logarithmic domain (where maximising a probability is translated
into minimising a cost), and parameters such as the LMSF and TIP are specified
in the configuration file as values in that domain. In the negative logarithmic
domain A; becomes a multiplicative factor and Ay becomes an additive penalty.
With respect to this domain, setting Ao = 0 will have no effect, but setting Ay > 0
will favour shorter segment sequences (and hence longer individual segments)
and setting Ay < 0 will favour longer sequences (and hence shorter individual
segments). Thus the TIP parameter Ay provides an external mechanism for
influencing segment lengths.

5.3 Switchboard data sets used

The 2002 and 2003 NIST SRE subsets of Switchboard were obtained through
NIST and LDC to enable us to evaluate the segmental GMM for speaker detec-
tion on the NIST 2003 SRE test. The experiments use:

e The one-speaker training material from the 2002 NIST SRE to train the
BM,
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e The one-speaker training data from the 2003 NIST SRE to train the SDMs,
and

e A subset of approximately 50% of the one-speaker test data from the 2003
NIST SRE as test data.

An analysis of the systems used in the 2003 NIST SRE and the results obtained
suggests that a suitable parameterisation of the speech signal would comprise
mel frequency cepstral coefficients 1 to 18, plus energy, plus the corresponding
A parameters. However, in the present system only the static parameters were
used. This was partly to reduce the computational load, and partly because it
was hoped that explicit modelling of speech dynamics would remove the need
for the A parameters, as discussed earlier in section 4.1.1. The data was then
parameterised as 18 mel frequency cepstral coefficients (MFCCs) plus an energy
measure (C0) using the HTK ‘HCopy’ tool?.

5.4 Training procedure for the ‘segmental’ GMM Background
Model

An analysis of published results for conventional GMM systems suggests that
an appropriate number of GMM components is of the order of 1024. However,
some researchers (for example Auckenthaler and Mason) have reported good
results on Switchboard data using as few as 500 components. In the case of
our ‘segmental GMM’, the time taken to train and evaluate a model with 1024
segmental components would preclude an extensive investigation of the effect of
different M-SHMM variants and parameters on speaker recognition performance.
Hence, for the current experiments the number of segmental components in the
‘segmental GMMs’ was set to 300 (M = 300 in figure 2).

5.4.1 Factors influencing the performance of a ‘segmental GMM’

The key parameters of the ‘segmental GMM’, whose effect on verification per-
formance we want to measure, are as follows:

e The maximum segment duration. The parameter 7,,,, specifies the
maximum allowable segment duration. If 7,,,, = 1 then states are associ-
ated with individual feature vectors, and our ‘segmental GMM’ reduces to
a type of conventional GMM. AS 7,4, increases, the model becomes ‘more
segmental’ but the computational load increases. In our experiments on
Switchboard, values of 1, 5 and 10 were chosen for 7,,4,-

3At first the MFCC-based parameterisation which uses an explicit measure of energy was
chosen (MFC_E), however it was found that with this parameterisation HCopy gives incorrect
results — abnormal huge positive or negative numbers — for some of the energy measure
parameters of Switchboard data. This problem does not occur if the zeroth MFCC coefficient
is used instead (MFC_0)
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e The trajectory slope. This could be set to zero, estimated for the BM
from training data and then maintained at this value for each speaker-
dependent model, or reestimated for each speaker model. The significance
of the trajectory slope parameters is likely to depend on the 7,4, param-
eter: with slope being more significant for larger values of T4z

e The segment duration model. Again this could be trained from data
for the BM and either passed unchanged to each speaker-dependent model
or reestimated for each speaker-dependent model. Since duration is a
segment-level, rather than frame-level, parameter, very few training ex-
amples of segment duration are likely to be contained in a typical speaker-
dependent adaptation or training set. Therefore accurate estimation of a
speaker-dependent duration model is likely to be an issue.

e The language model control parameters A\; and )Ay. As explained
previously, the SEGVit system includes two parameters, LMSF (A1) and
TIP (A2) (see section 5.2.1) which can be used to influence average segment
duration. If A\; and Ao take their default values of 1 and 0, respectively
(remember that these parameters operate in the negative log probability
domain), then they have no effect on the Viterbi decoder. However, setting
Ao > 0 will result in shorter state sequences and, hence, longer segments.
Conversely, if Ao < 0 longer state sequences and shorter segments are
preferred. Similarly, setting Ay > 1 will both sharpen the distribution of
mixture weights (and therefore increase their influence) and decrease their
magnitude (and therefore bias the decoder towards shorter state sequences
and longer segments). Conversely, choosing 0 < A\ < 1 will ‘flatten’
the distribution of mixture weights (and therefore reduce their influence)
and increase their average value (and therefore bias the decoder towards
longer state sequences and shorter segments). Thus by adjusting these two
control parameters during training or testing, it is possible to influence the
durational structures of the segments in the BM and speaker-dependent
models.

5.4.2 ‘Segmental GMM’ BM construction for Switchboard

As part of our previous research on TIMIT phone classification (Russell and
Jackson 2005), we have developed software to produce sets of context-sensitive
triphone M-SHMMs of varying sizes (using the monophone and biphone ‘backoft’
approach described earlier). Using this software we have developed TIMIT-based
model sets with between 104 and 5,989 models (or, equivalently, between 312
and 17,967 states). By combining all or a subset of the states of a suitable family
of models into a single, integrated M-SHMM of the type depicted in figure 2 we
hoped that we could obtain a suitable initial model to ‘seed’ Viterbi reestimation
of our segmental BM for Switchboard. Estimation of the target speaker models

18



could then proceed as previously described. For this pilot experiment we chose
the maximum segment duration 7,4, to be equal to 5.

Unfortunately this did not prove to be the case. The dissimilarity between
the TIMIT-based models and the Switchboard data was such that nearly 80%
of the MSHMM states were not visited at all during reestimation. After two
iterations of the reestimation, only 20% of the MSHMM states had non-zero
‘occupancy’ and could therefore be reestimated. Thus the effective number of
states was significantly reduced. We concluded that it is not possible to use
segmental states estimated estimated on TIMIT as initial models for work on
Switchboard.

As an alternative we estimated the mean values of 300 segments using k-
means clustering applied to a randomly chosen subset of the Switchboard 2002
data. The initial segment trajectory slope values were set to zero and the state
duration distributions were set to be uniform.

These initial segment models were used to construct an initial ‘segmental
GMM’ Background Model, which was optimised using the Viterbi-based M-
SHMM reestimation functions in the ‘SEGVit’ software toolkit and the NIST
2002 SRE one-speaker training set. The segment trajectory means and variances
were reestimated first, using 4 iterations of Viterbi training. Then the segment
trajectory means, slopes and variances were reestimated for a further 5 iterations.
The duration probabilities were only reestimated in the final, 5th, iteration.

Different maximum segment lengths corresponding to Ty, = 1,5 and 10
were chosen to make 3 sets of models, which we refer to as SW1, SW5, and
SW10. These models were built to test the effect of maximum segment duration
on speaker-detection performance. For all model sets except SW1, the segment
trajectory means and slopes, variances and the segment duration distributions
were estimated. In the case of SW1, only the segment trajectory means and
variances were reestimated, the trajectory slopes were set to 0 and the duration
length can only be 1. The model SW1 was treated as the counterpart of the
traditional GMM system and used as our baseline system.

5.5 Training procedure for the speaker-dependent ‘segmental
GMMs’

Each trained BM from section 5.4.2 was used to reestimate a speaker-dependent
‘segmental GMM’ (SDM) for each of the test speakers in the 2003 Switchboard
test set. Data from the 2003 Switchboard training set was used to reestimate
these models.

For the BM set SW5 (Tynq: = 5), three different sets of SDMs were produced:

e In the first set, SW5_0, the segment trajectory mean vectors were reesti-
mated but the slope vectors were set to zero in both the BM and SDMs.

e In the second set, SW5_1, only the segment trajectory mean values were
reestimated. The segment trajectory slopes in these models are therefore
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the same as those of the corresponding segment models in the BM.

e In the third set, SW5_2, the segment trajectory slopes were also reesti-
mated, along with the segment trajectory means.

For the speaker-dependent models the segment duration models and variance
parameters were not reestimated because of the limited amount of training data
which is available for each speaker. The trajectory means were reestimated in
all cases.

The effects on performance of setting the trajectory slope values to zero in
both the BM and SDMs, reestimating them for the BM but not the SDMs, or
reestimating them for the BM and SDMs, were tested experimentally.

5.6 Initial experiments on the NIST 2003 single-speaker evalu-
ation set

Because of the need to run segmental Viterbi decoding and to compute segment-
level probabilities, the computational load associated with our ‘segmental GMM*
is significantly greater than that associated with a conventional GMM. In order
to reduce this computational cost and to improve experimental turn-around
time, speaker-detection experiments were conducted using just half of the male
test speakers (671 speakers) and half of the female test speakers (1042 speakers)
from the NIST 2003 single-speaker evaluation set.

As specified in the NIST 2003 evaluation documentation, for each test file, 11
different verification tests were performed. This in turn involved 12 probability
calculations - one for the background model and 11 for the speaker-dependent
models.

The following experiments were conducted:

e Experiment 1: This experiment investigated the effects on performance
of setting the trajectory slope values to zero in both the BM and SDMs
(SW5_1), reestimating the trajectory slope vector for the BM but not for
the SDMs (so that the SDM trajectory slope vectors are equal to the cor-
responding BM slope vectors, STW5_2), and reestimating the slope vector
for both the SDMs and the BM (SW5_3). In this experiment 7,4, = 5.

e Experiment 2. The performances of the systems with maximum duration
Tmaz €t to 1 (SW1), 5 (SW5) and 10 (SW10) were compared. In these
experiments all of the BM trajectory parameters were reestimated and used
to seed the corresponding SDM parameters, and all of the SDM parameters
were then reestimated (except in the case of SW1, where the slope vectors
are all zero - this is the baseline system)
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5.7 Speeding up experiment turn-around time

It has already been noted that the computational load associated with M-
SHMMSs is an important issue (see section 3.3 and, in particular the discussion
after equation (3.3)).

For this reason, the time taken to train the BM and the even longer time re-
quired for testing meant that it would not be possible to evaluate many different
variations of the ‘segmental GMM’ system. However, as we have no previous
experience of applying these models to Switchboard, many experiments need to
be conducted to derive optimal values for the maximum segment durations and
to establish the utility of the different trajectory parameters.

It has already been noted that only half of the test set from the NIST 2003
was used, and this reduces the computation in testing by 50%. The number of
segmental states in the model was also kept low at 300. However, the computa-
tional load was still prohibitive.

5.7.1 Parallelisation of the SEGVit toolkit

The ‘SEGVit’ software toolkit has been modified so that model training can be
conducted in parallel on a ‘grid’ of computers. However the computation time
is still prohibitively long for a large detection task. For example, we estimate
that an evaluation of our reduced system, with 7,4, = 15 will take between 20
and 25 days on our 6-node cluster.

5.7.2 Beam pruning and duration pruning

Techniques which work for recognition, such as Beam Pruning have been ex-
tended to the ‘SEGVit’ toolkit during the period of this project, but they are
much less effective for speaker detection than for speech recognition. This is
because at present there is effectively no syntax to constrain possible segment
sequences. In other words, because each segment in the ‘segmental GMM’ can
be preceded by every other segment, pruning out paths in the past does not
alter the number of segments which have to evaluated in the present. We also
developed a new technique which we refer to as ‘Duration Pruning’ whereby a
segment probability is not calculated if the probability of its duration is below
a pre-determined threshold. Again, this technique works well for phone recogni-
tion experiments on TIMIT but appears to be less useful for speaker detection
experiments on Switchboard.

5.7.3 Auckenthaler’s method for reducing computational load

In a further attempt to speed up our experiments, we investigated a technique
described by Auckenthaler in his thesis (Auckenthaler 2001).

Auckenthaler proposes two methods to reduce the computational load in a
conventional GMM-based speaker detection system:

21



e In Auckenthaler’s first method a ‘bigram’ grammar for sequences of GMM
mixture components is built using mixture component sequences observed
on the training data. For each mixture component m, this bigram grammar
is used to identify the sub-set of N components which are most probable
at time ¢ + 1 if the m!® component is most probable at time t. During
recognition the decoder is constrained so that if a particular mixture com-
ponent m is used at time ¢, then only this pre-determined subset of mixture
components is considered at time t + 1.

e The second method exploits the link between the BM and each of the
SDMs. Since each SDM is seeded by the BM, it is argued that there
is a strong connection between the m!* component of the BM and the
corresponding m*" component of the SDM. Auckenthaler reasoned that if
this is the case, then given a test utterance Y = [y, ..., yr| the sequence
of mixture components 11y, ..., M7y which is optimal for the BM should
be close to optimal for each SDM. Therefore, once the optimal sequence of
components has been computed for the BM, Auckenthaler uses exactly the
same sequence for each of the SDMs. In essence, this means that for each
acoustic vector y; only the probability by, (y¢) needs to be evaluated and
the remaining M — 1 probabilities b,, need not be evaluated. For a 500
component GMM, this means a 499-fold reduction in computational load.

In (Auckenthaler 2001) the effects of these techniques on detection performance
are documented.

We developed new software within the ‘SEGVit’ system to implement our
analogy to Auckenthaler’s second scheme. First the optimal state sequence be-
tween a given test utterance and the BM was computed. We then assumed that
the same state sequence is valid for the SDMs, thereby removing the need to do
further Viterbi decoding. We tested this method on the system with 7,4, = 10.
The new method effectively reduced the processing time for testing from more
than two weeks to within 3 days, with little loss in system performance. For a
system with 7,4, = 15, the verification process can be completed within 5 days,
and the time taken for whole training and test process decreases from about one
month to only 7 or 8 days.

5.8 Effect of \; and \; on segment duration

As described earlier, the Language Model Scaling Factor (A;) and Token Inser-
tion Penalty (A2) can be used to alter the statistics of segment duration. Figure
3 shows the effect of varying the second parameter, Ay on segment duration
statistics. In these experiments A; was set to 1 while Ay was varied between
—10 and 100. It is important to note that these statistics are obtained from
the test data. The BM and SDMs were trained with 7,4, = 10, Ay = 1 and
Ao = 0. Figure 3 shows that the average segment duration for the ‘default’ case
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Figure 3: Duration length distributions for different values of the Token Insertion
Penalty No. LM _x_y refers to the case where A\ = x and Ao =y. LM _1.0 is the
default.

where A1 = 1 and A9 = 0 is 30ms, with a minimum duration of 5ms and a max-
imum duration of 70ms. By increasing Ao to 10 the most probable duration is
increased to 80ms. For such large values of \s it is likely that there is a conflict
between the effect of Ay, which is to increase the expected segment duration, and
the hard upper-bound on segment duration imposed by Tyqe. Setting Ay = —2
shifts the duration distribution slightly to the left (towards shorter durations),
while setting Ay = —10 causes all segments to have minimum duration, which is
10ms (or one acoustic vector).

5.9 Results of Switchboard experiments
5.9.1 Effect of the trajectory slope vector

The results for the first experiment (experiment 1), with model sets SW5_1
SW52 and SW5_3* are shown as DET curves in Appendix A (figure 5). Recall
that T = 5 in these experiments. The figure shows that the equal error rate for
all three systems is approximately 14%. The best performance is obtained using
speaker-dependent trajectory slopes (scheme 3), but the difference between this
and the other results is very small and unlikely to be significant. The experiment
in which non-zero BM slopes are estimated, and used to seed the speaker-model
slopes but are not subsequently reestimated (scheme 2), gives results which are
almost indistinguishable from the zero-slope result (schemel).

4Recall that conditions 1, 2 and 3 correspond to trajectory slopes set to zero in the BM and
SDMs; BM trajectory slopes learnt but not reestimated in the SDMs; BM trajectory slopes
learnt and reestimated for the SDMs
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5.9.2 Effect of the maximum segment duration 7,,,,

The results of the second experiment (experiment 2), for systems with different
maximum durations, namely SW1 (Tyee = 1), SW5 (Tae = 5) and SW10
(Tmaz = 10) are shown in Appendix A (figure 6). The figure shows that the
systems with 7,4, = 5 and 7,4, = 10 work very slightly better than the system
with 7y,4: = 1, but the differences are too small to be significant. Recall that
SW1 is our approximation to a conventional GMM.

These results are certainly not as we expected. We expected that in exper-
iment 1 scheme 1 would give poorer results than schemes 2 and 3, and thereby
demonstrate the utility of modelling dynamics by incorporating a non-zero slope
parameter. In fact this experiment provides little evidence to support the hy-
pothesis that the use of linear segment models with non-zero trajectory slopes
is beneficial for speaker detection. This result contrasts with the previous result
for YOHO, where there does appear to be a benefit.

In the second set of experiments we expected that SW10, with maximum
segment duration set to 10, would outperform SW5 (T4 = 5), and that SW5
would in turn outperform SW1 (7,4, = 1). However there is little evidence in
the results to support this expectation. It should also be noted that the results of
experiments 1 and 2 are consistent. If (as suggested by the results of experiment
1) there is no benefit from using a model based on ‘dynamic’ trajectories with
non-zero slope, then one would not expect to observe any benefit from longer
segments (since a long, constant segment can be modelled just as well by a
sequence of short, constant segments).

We note that all of these results are clearly much worse than the best per-
formance obtained on the full 2003 test set using a conventional GMM system,
which is a little over 5% equal error rate. This was obtained using a 2048
component GMM system, T-norm and a biologically inspired acoustic parame-
terisation. However, the goal of these initial experiments was not to challenge
the state-of-the-art in terms of performance, but to conduct comparative exper-
iments to determine the benefits of using a dynamic, trajectory-based model.

5.9.3 Effects of reducing the computational load

The results obtained by applying the ‘segmental GMM’ version of Auckenthaler’s
second method, described in section 5.7.3, are shown in the DET curves in
Appendix B. Each figure shows two DET curves. The dashed (blue) line is the
same in all of the figures and is included as a baseline. It shows the DET curve
obtained when separate Viterbi decoding is applied to each of the SDMs (i.e.
Auckenthaler’s method is not used). For these experiments A\; = 1, Ay = 0 and
Tmaz = 10.

The solid (red) DET curves show the results of applying Auckenthaler’s
method (i.e. using the optimal state sequence obtained using Viterbi decod-
ing relative to the BM to calculate the SDM probabilities) together with dif-
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ferent values of language model control parameters A; and Ao (A = 1; A9 €
{-10,-2,0,2,5,15,50,100}).

Figure 7 shows a direct comparison, for Ay = 1 and A2 = 0, of the results
obtained with and without the computational reduction due to Auckenthaler’s
method. The figure shows that the DET curves are almost identical, with the
reduced computation method showing small gains at each extreme of the DET
curve but performinslightly worse towards the centre of the curve. We conclude
that the large reduction in computational load which results from using the op-
timal BM state sequence to calculate the SDM probabilities is not compromised
by a significant change in speaker detection performance.

Turning now to the effects of varying the Token Insertion Penalty Ao (figures
8 to 14) we see that there is very little difference between the DET curves
for the different values of Ay, despite the large variation in expected segment
duration shown in figure 3. In particular, it is certainly not the case that (as
one might have expected) performance reaches a maximum for some positive
value of A\o. Indeed, larger values of A9 lead to decreases in performance, and
the best performance is obtained with Ao = —2. From figure 3 this value of Ay
corresponds to an expected segment duration of between 20ms and 30ms. It
seems that shorter segment duration lengths give the best performance, which is
quite different from what we expected but consistent with the results for varying
Tmaz-

At this point we noted a possible incompatibility in these experiments. The
language model control parameter Ao was only varied during testing and not
during training. Therefore it’s effect on segment duration during testing is
incompatible with the duration models learnt during training. To make the
effect of the language model control parameters compatible with the model du-
rations, additional experiments were carried out. In these experiments, the lan-
guage model control parameter Ay was the same in model training as in testing
(A2 € {5,15,50}).

The results of these experiments are shown in Appendic C. The DET curves
for the systems which use the optimal BM state sequences when calculating SDM
probabilities are shown with a solid (green) grey line (this is the ‘Auckenthaler
method’). The DET curves for systems which apply Viterbi decoding separately
to the BM and SDMs are shown with a dashed (blue) line (A; = 1; Ay = 0). The
DET curve for a conventional GMM system is shown with a solid, black line.

The results are similar to those in Appendix B. These support the hypothesis
that the results in Appendix B are not affected significantly by use of different
values of Ay in training and testing. As in Appendix B, the DET curves in
Appendix C show a trend whereby performance decreases as Ay (and hence the
average segment durations) increases. The figures confirm, again, that Aucken-
thaler’s method has little effect on performance.
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6 Visualisation of the ‘segmental GMM’ segment
models

The results of our speaker detection experiments on Switchboard are not as
expected. We have been unable to demonstrate any benefit from the use of
‘dynamic’ segments based on linear trajectories with non-zero slope. Hence
we have also not been able to demonstrate any benefit from the use of longer
segments. This results is at odds with our earlier speaker detection results on
YOHO, described in section 4.2, and with the phone recognition results presented
in (Russell and Jackson 2005).

In order to try to understand this result, we have written a MatLab program
to visualise the individual segment models in the ‘segmental GMM’. The results
are illustrated in Appendix D.

For each segment, we computed linear trajectories for all 19 MFC coefficients.
The length of a segment is its average length, based on its duration distribution.
This results in a sequence of 19 dimensional MFCC vectors. We then applied
an inverse Discrete Cosine Transform to each of these vectors to obtain a mel
frequency spectrum, whose frequency axis was then warped to obtain a linear
frequency spectrum. The resulting sequence of linear spectral vectors is displayed
as a grey-scale spectrogram to give one of the figures in appendix C.

Visual inspection of these ‘spectrograms’ suggests that they are all valid
speech segments, and that they correspond to different components of a plausible
segmental model of speech. For example, the second segment in the third row on
the first page of appendix D is clearly vowel like, while the segment in position
(5,1) is more fricative-like. The figures show a mixture of stationary and non-
stationary segments.

In summar, visual inspection of these segments does not reveal any obvious
problems, and a method for more detailed analysis is needed.

7 Provision of SEGVit software toolkit to AFRL

In addition to conducting the speaker-detection experiments which are described
in this report, we also provided Dr Timothy Anderson’s research group at the
Air Force Research Laboratory (AFRL) at Wright-Patterson Air Force Base,
Dayton, Ohio, with a copy of the SEGVit toolkit and with guidance on how
to use it. This was to enable AFRL to evaluate M-SHMMs for phone-based
speaker-detection on Switchboard, using the SRI phone-level annotations of the
Switchboard corpus. To achieve this, various changes to the SEGVit software
were required, and these were implemented, tested and sent to AFRL.
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8 Conclusions and further work

This report has described the main results obtained during the 12 month
EOARD project #033060 “Speaker verification using a dynamic, ‘articulatory’
segmental hidden Markov model”, which started on 15 October 2003.

The results of text-dependent speaker verification experiments on the YOHO
corpus are presented first. These show a 44% decrease in false acceptance rate for
a segmental HMM based system, relative to a conventional HMM-based system,
for the same false rejection rate. However, the false rejection rate is too small
to draw firm conclusions about the relative merits of the two approaches. Hence
our attention moved away from YOHO to the Switchboard corpus.

To conduct text-independent speaker detection experiments on Switchboard
we developed a type of ‘segmental GMM’, which models speech as a sequence of
outputs of a set of linear-trajectory-based statistical segment models. However,
due to the requirement to do segmental Viterbi decoding and the need to com-
pute segment-level probabilities, the computational demands of this model are
prohibitive. We overcame this problem as follows:

e We only conducted experiments on 50% of the NIST 2003 SRE single-
speaker test set

e We developed a parallel version of the ‘SEGVit’ software toolkit, which
enabled training to be spread over a grid of computers

e We incorporated versions of beam pruning and ‘duration pruning’ into the
‘SEGVit’ software.

e We successfully extended Auckenthaler’s method, whereby the optimal BM
state sequence is used to compute the SDM probabilities, to our ‘segmental
GMM’

By combining these methods we were able to run a speaker detection experiment
on our reduced NIST 2003 test set in a few days. For example, the time taken
to evaluate a system with maximum segment duration equal to 10 on our 6 node
cluster was reduced from two weeks to three days.

The main results of our experiments on Switchboard are as follows:

e The techniques described above to reduce the computational load were very
successful and had no significant effect on speaker detection performance

e On the Switchboard corpus, we were unable to demonstrate any benefit
from the use of ‘dynamic’ segments based on linear trajectories with non-
zero slope

e Consequently, we were unable to demonstrate any significant benefit from
the use of long segments. Indeed, the best performance was obtained with
segments with an expected duration of between 20ms and 30ms, obtained
by setting the Token Insertion Penalty A to -2.
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The discrepancy between the performance of M-SHMMSs for text-dependent
detection on YOHO and their performance for text-independent detection on
Switchboard is puzzling. There are at least two possible explanations:

e The experiments on YOHO are text-dependent and use the YOHO word-
level labeling. This labeling enabled us to use phone-level models in
speaker detection. By contrast, no labels were used in the case of Switch-
board and the models were ‘machine learnt’ segment models with no ex-
plicit phonetic interpretation. It could be that some sort of explicit labeling
is needed to guide the segmental model building process. However, par-
allel experiments were conducted at AFRL using the ‘SEGVit’ software
toolkit and the automatically-derived SRI Switchboard phone-level labels
to build phone-level trajectory-based M-SHMMs. These models performed
worse than a conventional GMM-based system in tests where both systems
had comparable numbers of parameters. This suggests that the absence of
phone level labeling in Switchboard is not the answer.

e An alternative explanation is that the discrepancy is due to the different
styles of speech in the YOHO and Switchboard corpora. While YOHO
contains recordings of read speech, Switchboard comprises recordings of
conversational speech over various telephone chanels. The poorer quality
of the Switchboard speech might have caused difficulty for the data-driven
segment model learning process, or, alternatively, cues which the segment
models were able to use in the YOHO corpus may be absent in Switch-
board.

To test the hypothesis that the poor quality of the Switchboard data com-
promises the data-driven segment model learning process, we developed MatLab
code to visualise the individual segment models. However, inspection of these
representations of the individual segment models in our ‘segmental GMM’ does
not reveal any obvious problems - the segment model set appears to cover a
range of speech-like segments. However, the true quality of the segment models
is difficult to judge, and better visualisation tools are needed. In particular we
need to extend our segment model visualisation tools to enable us to display real
spectrograms of Switchboard data alongside a representation of the spectrogram
corresponding to the optimal sequence of segment models. This should give a
much better understanding of the accuracy of the model.

At present, our main conclusion is that the fact that the inclusion of dynamic
segments, corresponding to trajectories with non-zero slope, consistently fails to
improve speaker detection accuracy on Switchboard, suggests that these dynamic
regions do not contain information which helps to differentiate between speakers
in this corpus. If this is true, it would go some way to explaining the success of
conventional GMM-based approaches to speaker detection on Switchboard. It is
also possible that these dynamic regions are more useful in a non-conversational
corpus like YOHO.
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To confirm this hypothesis, we believe that it is important to conduct further
work to determine the exact contribution of dynamic regions of a speech signal
to speaker-detection accuracy. In the context of our current work, we can define
dynamic regions of a speech signal to be those which align with segments with
large slope values in the segmental GMM. By measuing the contribution to
the likelihood ratio 2 ](:(;L‘?) of individual segments of a speech signal, we will be
able to measure the relative contributions of static and dynamic segments to the
speaker-detection decision. We propose to apply this analysis to Switchboard, to
test our hypothesis, and to YOHO to see if the contribution of dynamic regions
is more important for a read, and therefore more carefully articulated, corpus.
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APPENDIX A

Results of text-dependent and text-independent speaker verification experi-
ments.

Speaker Detection Performance

5 ‘ ‘ ‘
2 |- - .|
1
-
— hl
S —
£ I
£ 1t ! 1
a |
8 ;
[=]
=1 I
g |
g
05 f & - 1
|
L
|
|
|
02 | ]
01 ; ; ; ;
0.1 0.2 0.5 1 2 5

False Alarm probability (in %)

Figure 4: Text-dependent speaker verification results on YOHO using HMMs (dashed
line) and MSHMMSs (solid line).
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Figure 5: Speaker verification results on a 50% subset of the NIST 2003 Switchboard
‘one-speaker’ test set, using linear trajectory segmental HMMs with 7,4, = 5. The
results are for trajectory slopes set to zero in both the BM and the SDMs (scheme 1 -
black line), trajectory slopes reestimated for the BM but not reestimated for the SDMs
(scheme 2 - green line), and reestimated for each of the SDMs (scheme 3 - red line).
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Figure 6: Speaker verification results on a 50% subset of the NIST 2003 Switchboard
‘one-speaker’ test set, using linear trajectory segmental HMMs with 7,4, = 1 (scheme
1 - black solid line), 7pq = 5 (scheme 2 - dashed line), T4 = 10 (scheme 3 - green

solid line) .
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APPENDIX B

Results of experiments to investigate the effect of using the BM optimal state
sequence when computing the SDM probabilities, and different values of A\; and
Ag.

The DET curves for the systems which use the optimal BM state sequences
when calculating SDM probabilities are shown with a solid line (this is the ‘Auck-
enthaler method’). The DET curves for systems which apply Viterbi decoding
separately to the BM and SDMs are shown with a dashed line. This line is the
same in all of the figures and corresponds to Ay = 1; Ay = 0.
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Figure 7: A1 =1; A2 =0.
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APPENDIX C

Results of experiments to investigate the effect of using the BM optimal state
sequence when computing the SDM probabilities, and different values of A\; and
Xo. Experiments are as in Appendix B, except that the same values of A1 and
Ao are used in training and recognition.

The DET curves for the systems which use the optimal BM state sequences
when calculating SDM probabilities are shown with a solid grey line (this is
the ‘Auckenthaler method’). The DET curves for systems which apply Viterbi
decoding separately to the BM and SDMs are shown with a dashed line (A} = 1;
A2 = 0). The DET curve for a conventional GMM system is shown with a solid,
black line.
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Figure 15: LMScale = 1; LMInsP =5 .
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Figure 17: LMScale = 1; LMInsP = 50 .
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APPENDIX D

Spectrograms corresponding to trained segments from the SDM for female
speaker 5090
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